Spatial Reasoning and Student Success

 

img_1462

Spatial Reasoning

This year, I have had the privilege of designing a brand new makerspace for our school. In addition, I have been able to focus on visual-spatial reasoning as the thread that pulls together science, math and technology.

What is spatial reasoning?

According to the Ministry of Education, Spatial reasoning is the ability to engage in reasoning, and understand the location, rotation and movement of ourselves and other objects in space. It involves a number of processes and concepts. More information about this can be found here: http://www.edu.gov.on.ca/eng/literacynumeracy/LNSPayingAttention.pdf

 

Why is Spatial Reasoning important?

There already exists a very strong body of research that spatial thinking correlates with later performance in math. In addition, research consistently demonstrates strong linkages between spatial ability and success in math and science — and those students with strong visual and spatial sense are more likely to succeed in STEAM careers.

It is absolutely clear that early exposure to visual-spatial reasoning is very important.

However, as educators, we traditionally have failed to recognize that our youngest students are actually able to perform way above the expected levels of spatial reasoning. We generally leave these tasks for older students. This has to change.

Not only is this a problem because we are neglecting our youngest students who already come to school with a high level of spatial-reasoning skills, but this also means that our youngest students are not having equal access to spatial reasoning activities that they are able to perform. This is a social justice issue. Especially when we consider that visual-spatial reasoning positively correlates with later performance in math (Mazzocco & Myers, 2003). If we know the research, and have the opportunity to employ high quality spatial reasoning activities for all students in Kindergarten, should we let older curriculum and older beliefs hold us back? Do we recognize when we are teaching in the ways that we used to be taught? What if we had the ability to ensure all of our youngest students engage in spatial reasoning? How would this impact their future?

In fact, students who experience issues with math, often have difficulties with geometry and visual spatial sense (Zhang, et al., 2012). This to me sounds like an amazing opportunity to understand mathematical achievement via spatial reasoning. The earlier we recognize this, the earlier we can respond.

Wouldn’t it be great if we gave all students the ability to access higher level learning associated with visual-spatial sense right from the get-go? Imagine the impact this could have in overall math achievement throughout our students entire school career, and beyond, in their STEAM based careers.

To me, I think this behooves us to ensure we have access to makerspaces – regardless of where they are located in our schools – to promote visual spatial reasoning skills.

What do you think?

 

Deborah McCallum

c 2016

References:
http://www.edu.gov.on.ca/eng/literacynumeracy/LNSPayingAttention.pdf
http://tmerc.ca/research/
http://www.pme38.com/wp-content/uploads/2014/05/RF-Sinclair-et-al.pdf
Mazzocco, M. M. M., & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disablilities Research & Practice, 20(3), 142-155. doi:10.1111/j.1540-5826.2005.00129.x
Mazzocco, M. M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school age years. Annals of Dyslexia, 53, 218–253
Zhang, D., Ding, Y., Stegall, J., & Mo, L. (2012). The effect of Visual‐Chunking‐Representation accommodation on geometry testing for students with math disabilities. Learning Disabilities Research & Practice, 27(4), 167-177. doi:10.1111/j.1540-5826.2012.00364.x